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Abstract-A seven parameter shell model of the interatomic forces in the NaCllattice is used to make 
a detailed lattice dynamics calculation at arbitrary volume, for fourteen alkali halides. The calculated 
normal mode spectrum gives an explicit vibrational contribution to the pressure and the elastic 
constants in the quasiharmonic approximation. The seven parameters are chosen to fit low pressure 
ultrasonic data and the low and high frequency dielectric constants. Prediction of the Griineisen 
parameter ,)" (iiln')'/iiln V), and 8, = (- 1/{3B, )(dB,/dT) are in reasonable agreement with experiment. 
The calculated,), decreases monotonically with volume. Calculated Hugoniots are in good agreement 
with experiment for NaCI, NaBr and NaI, and in fair agreement for LiBr, LiI and NaF. 

I. INTRODUCTION 

Theoretical equations of state are of great impor­
tance to high pressure physics. They permit inter­
polation and extrapolation into regions in which 
experimental data is sparse or lacking. They help in 
planning future high pressure experiments and they 
are important in comparing static high pressure ex­
periments with shock wave experiments, in which 
case the treatment of thermal effects at high pres­
sure is particularly important. 

Thermal effects in the equation of state can be 
treated to a high degree of accuracy through the 
Mie-Griineisen equation of state, one form of 
which is 

p = p + 'Y, E V;b 

V 
(1) 

where P is the pressure, P the pressure of the static 
non-vibrating lattice, E V;b is the vibrational energy, 
V the volume, and 'Yo is one of the Griineisen 
parameters. If the energy due to phonon-phonon 
interactions is neglected , then in the high tempera­
ture limit E V;b is a linear function of temperature at 
constant volume, and 'Yo equals the thermodynamic 
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Griineisen parameter and is a function of volume 
only. The treatment of thermal effects at high 
pressure thus depends mainly upon how 'Y varies 
with V. In the past, typical assumptions have been 
'Y = 'Yo, a constant, 'Y! 'Yo = I - q (Vo - V)! Y o, or 'Y = 
'Yo( V I Vo)q, where q is of the order of unity. There 
has been little justification for this type of assump­
tion, and several authors [1,2] have recently 
pointed out that there is a great deal of uncertainty 
about how 'Y varies with volume. 

Many authors have shown that lattice-dynamics 
calculations, based on a simple atomic model and a 
summation over all modes of vibration can accu­
rately predict the Griineisen parameter at zero 
pressure as a function of temperature [3-11] and 
calculate its volume derivative[12, 13]. However, 
none of these authors have extended this type of 
calculation to the high pressure-high temperature 
regime. On the other hand, several authors have 
used an assumed interatomic energy function to 
predict the equation of state and elastic constants at 
high pressure[14-22] , but with the exception of a 
preliminary report on the present work [23], they 
have not calculated the Grtineisen parameter con­
sistent with this potential function , and their equa­
tions have usually been limited to a single isotherm. 

In the present paper, an interatomic potential 
energy function is assumed and used to calculate 
not only the equation of state and elastic constants 
but also the Grtineisen parameter and other thermal 
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properties at arbitrary volume and temperature . 
Thermal contributions to the pressure and elastic 
constants are calculated in the quasi-harmonic ap­
proximation. An important aspect of the present 
calculation is that while the form of the interatomic 
potential function is assumed, its arbitrary parame­
ters and hence the strength of its individual terms 
are determined so that the model is in agreement 
with the elastic constants and their pressure deriva­
tives at zero pressure. If a correct assumption has 
been made for the form of the interatomic poten­
tial , this fitting of parameters certainly gives the 
model the best chance of predicting equation of 
state, Hugoniot curves and various other ther­
modynamic properties of the alkali halides at high 
pressures. 

An alternative approach to the determination of 
the equation of state at high pressure is finite strain 
theory, which has recently been extended by 
Thomsen [24-27] to include the high pressure-high 
temperature regime. It makes no assumptions about 
the nature of the interatomic forces and is thus 
applicable to a wider range of materials than the 
present lattice model calculation. However, it 
requires a great deal of experimental data as input, 
much of which is not presently available for most 
compounds, and it is apt to be inaccurate at low 
temperatures. Lattice theory and finite strain 
theory are thus presently complimentary to each 
other, with each one applicable to some compounds 
which are presently inaccessible to the other. 

2. THE LATTICE MODEL 

For the present calculation it was assumed that 
the potential energy per atom pair of the alkali 
halides, 4>0 is given by 

The first summation over all lattice sites involves 
the electrostatic energy. The second summation 
over nearest neighbors (NN) involves the repulsive 
interaction between unlike ions arising from the 
Pauli exclusion principle and the kinetic energy of 
the electrons, and the third summation involves the 
van der Waals and repUlsive interaction between 
next nearest neighbor (NNN) anions. The separa­
tion of the appropriate pairs of ions is 'if, e is the 
electron charge, and Z, b+_, b __ , p+, p_ and Care 
assumed to be constants which vary from com-

pound to compound. This potential is similar to that 
used by several others in high pressure 
calculations [18, 19, 28-31]. Demarest[21, 23] and 
Sammis [20, 22] used alternatively a Lennard-Jones 
six-twelve potential between anions . Although it 
has not been shown whether the exponential or 
power law gives a better representation of the 
repulsive force between ions, it is probably more 
consistent for both the NN and NNN terms to be 
of the same form. 

In addition the shell model formalism was used to 
permit the anion to be polarizable. In this formal­
ism, the anion is assumed to consist of a spherical 
massless shell of charge Y through which short 
range forces with neighboring ions act, and a heavy 
ion core, bound to the shell with an isotropic spring 
of spring constant k. Both Y and k were assumed 
to be independent of volume. 

A major defect of this model is that it has only 
central two-body forces, and therefore cannot be 
made to fit the three independent elastic constants 
of the cubic system exactly. Although several mod­
els have been developed such as the breathing shell 
model [32] which claim to solve this problem, they 
are only strictly applicable when C'2 - C •• - 2P < 0, 
which is not the case for most of the alkali-halides, 
most notably RbF. Moreover, unlike the central 
force interactions assumed in the present study, it 
would be difficult to decide how many of these 
interactions should vary over a wide change in 
volume. Fortunately, for most alkali-halides the 
central force approximation is nearly correct and 
the present calculations will not be seriously in 
error. 

The usual shell model equations [for example, 
33], simplify to give the dynamical matrix D, whose 
eigenvalues are the squared circular frequencies 
w2 

D = [y'mr'(R + ZCZ - [R + ZCY] 
x [R + k + YCyr '[R + YCZ])[y'mr ' (3) 

where Rand C are six by six matrices describing 
short range and coulombic interactions, Z and Y, 
are diagonal matrices giving the ionic and shell 
charges, and [Ym] is a diagonal matrix of the 
square root of the ionic masses . The Rand C 
matrices are calculated by the summation 

(4) 

where the indices /-L, v = 1 or 2 refers to the anion or 
cation, separated by the vector r , and k is the 


